Publications
Browse peer-reviewed literature, posters, webinars, blog articles, and more showing how we and others are using RepliGut Systems to support discovery.
2025
Pike, Colleen M.; Levi, James A.; Boone, Lauren A.; Peddibhotla, Swetha; Johnson, Jacob; Zwarycz, Bailey; Bunger, Maureen K.; Thelin, William; Boazak, Elizabeth M.
High-throughput assay for predicting diarrhea risk using a 2D human intestinal stem cell-derived model Journal Article
In: Toxicology In Vitro, vol. 106, pp. 106040, 2025, ISSN: 0887-2333.
Abstract | Links | BibTeX | Tags: Adverse events, Diarrhea, Epithelium, High throughput, In vitro model, Intestine
@article{pike_high-throughput_2025,
title = {High-throughput assay for predicting diarrhea risk using a 2D human intestinal stem cell-derived model},
author = {Colleen M. Pike and James A. Levi and Lauren A. Boone and Swetha Peddibhotla and Jacob Johnson and Bailey Zwarycz and Maureen K. Bunger and William Thelin and Elizabeth M. Boazak},
url = {https://www.sciencedirect.com/science/article/pii/S0887233325000347},
doi = {10.1016/j.tiv.2025.106040},
issn = {0887-2333},
year = {2025},
date = {2025-06-01},
urldate = {2025-06-01},
journal = {Toxicology In Vitro},
volume = {106},
pages = {106040},
abstract = {Gastrointestinal toxicities (GITs) in clinical trials often lead to dose-limitations that reduce drug efficacy and delay treatment optimization. Preclinical animal models do not accurately replicate human physiology, leaving few options for early detection of GITs, such as diarrhea, before human studies. Chemotherapeutic agents, known to cause clinical diarrhea, frequently target mitotic cells. Therefore, we hypothesized a model utilizing proliferative cell populations derived from human intestinal crypts would predict clinical diarrhea occurrence with high accuracy. Here, we describe the development of a diarrhea prediction assay utilizing RepliGut® Planar, a primary intestinal stem cell-derived platform. To evaluate the ability of this model to predict clinical diarrhea risk, we assessed toxicity of 30 marketed drugs by measuring cell proliferation (EdU incorporation), cell abundance (nuclei quantification), and barrier formation (TEER) in cells derived from three human donors. Dose response curves were generated for each drug, and the IC15 to Cmax ratio was used to identify a threshold for assay positivity. This model accurately predicted diarrhea potential, achieving an accuracy of 91 % for proliferation, 90 % for abundance, and 88 % for barrier formation. In vitro toxicity screening using primary proliferative cells may reduce clinical diarrhea and ultimately lead to safer and more effective treatments for patients.},
keywords = {Adverse events, Diarrhea, Epithelium, High throughput, In vitro model, Intestine},
pubstate = {published},
tppubtype = {article}
}
2023
Sarma, Sudeep; Catella, Carly M.; Pedro, Ellyce T. San; Xiao, Xingqing; Durmusoglu, Deniz; Menegatti, Stefano; Crook, Nathan; Magness, Scott T.; Hall, Carol K.
Design of 8-mer Peptides that Block Clostridioides difficile Toxin A in Intestinal Cells Journal Article
In: pp. 2023.01.10.523493, 2023.
Abstract | Links | BibTeX | Tags: Adverse events, epithelial barrier, In vitro model, inflammatory bowel disease, intestinal organoids, intestinal stem cells, microbiome
@article{sarma_design_2023,
title = {Design of 8-mer Peptides that Block Clostridioides difficile Toxin A in Intestinal Cells},
author = {Sudeep Sarma and Carly M. Catella and Ellyce T. San Pedro and Xingqing Xiao and Deniz Durmusoglu and Stefano Menegatti and Nathan Crook and Scott T. Magness and Carol K. Hall},
doi = {10.1101/2023.01.10.523493},
year = {2023},
date = {2023-01-12},
urldate = {2023-01-12},
pages = {2023.01.10.523493},
abstract = {Clostridioides difficile ( C. diff .) is a bacterium that causes severe diarrhea and inflammation of the colon. The pathogenicity of C. diff . infection is derived from two major toxins, toxins A (TcdA) and B (TcdB). Peptide inhibitors that can be delivered to the gut to inactivate these toxins are an attractive therapeutic strategy. In this work, we present a new approach that combines a pep tide b inding d esign algorithm (PepBD), molecular-level simulations, rapid screening of candidate peptides for toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block the glucosyltransferase activity of TcdA by targeting its glucosyltransferase domain (GTD). Using PepBD and explicit-solvent molecular dynamics simulations, we identified seven candidate peptides, SA1-SA7. These peptides were selected for specific TcdA GTD binding through a custom solid-phase peptide screening system, which eliminated the weaker inhibitors SA5-SA7. The efficacies of SA1-SA4 were then tested using a trans-epithelial electrical resistance (TEER) assay on monolayers of the human gut epithelial culture model. One peptide, SA1, was found to block TcdA toxicity in primary-derived human jejunum (small intestinal) and colon (large intestinal) epithelial cells. SA1 bound TcdA with a K D of 56.1 ± 29.8 nM as measured by surface plasmon resonance (SPR).
SIGNIFICANCE STATEMENT: Infections by Clostridioides difficile , a bacterium that targets the large intestine (colon), impact a significant number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can inhibit the biocatalytic activity of these toxins represent a promising strategy to prevent and treat C. diff . infection. We describe an approach that combines a Peptide B inding D esign (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in small intestinal and colon epithelial cells. Importantly, our designed peptide, SA1, bound toxin A with nanomolar affinity and blocked toxicity in colon cells.},
keywords = {Adverse events, epithelial barrier, In vitro model, inflammatory bowel disease, intestinal organoids, intestinal stem cells, microbiome},
pubstate = {published},
tppubtype = {article}
}
SIGNIFICANCE STATEMENT: Infections by Clostridioides difficile , a bacterium that targets the large intestine (colon), impact a significant number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can inhibit the biocatalytic activity of these toxins represent a promising strategy to prevent and treat C. diff . infection. We describe an approach that combines a Peptide B inding D esign (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in small intestinal and colon epithelial cells. Importantly, our designed peptide, SA1, bound toxin A with nanomolar affinity and blocked toxicity in colon cells.
2022
Bolster, Doug; Chae, Lee; van Klinken, Jan-Willem; Kalgaonkar, Swati
Impact of selected novel plant bioactives on improvement of impaired gut barrier function using human primary cell intestinal epithelium: Journal Article
In: Journal of Food Bioactives, vol. 20, 2022, ISSN: 2637-8779.
Abstract | Links | BibTeX | Tags: Bioactives, Gut barrier function, Gut permeability, Hepatic nuclear factor 4α, In vitro model, inflammatory bowel disease, intestinal barrier, N-Trans-caffeoyltyramine, N-Trans-feruloyltyramine
@article{bolster_impact_2022,
title = {Impact of selected novel plant bioactives on improvement of impaired gut barrier function using human primary cell intestinal epithelium:},
author = {Doug Bolster and Lee Chae and Jan-Willem van Klinken and Swati Kalgaonkar},
url = {http://www.isnff-jfb.com/index.php/JFB/article/view/301},
doi = {10.31665/JFB.2022.18324},
issn = {2637-8779},
year = {2022},
date = {2022-12-30},
urldate = {2022-12-30},
journal = {Journal of Food Bioactives},
volume = {20},
abstract = {Gut barrier function is compromised in the obese state. The N-trans caffeoyltyramine (NCT) and N-trans feruloyltyramine (NFT), two naturally occurring bioactive compounds in hemp hulls, identified using in silico approaches, have the potential to improve gut barrier function and their effects were studied here in vitro. Proliferative human transverse colon epithelial cells were plated and co-cultured with tumor necrosis factor (TNF) along with NCT, NFT or NCT/NFT (2.2 ratio) post-differentiation, over a 48-hour period to induce inflammation and to observe the effects of NCT and NFT. A decrease in transepithelial electrical resistance (TEER) and increase in the intestinal permeability were observed with increased addition of TNF. Co-administration of NCT and NFT demonstrated a dose-dependent and statistically significant reversal of impaired TEER and intestinal permeability. NCT and NFT demonstrated a physiologically relevant reversal of impaired gut barrier function in the setting of inflammation via significant improvement in TEER and percent permeability.},
keywords = {Bioactives, Gut barrier function, Gut permeability, Hepatic nuclear factor 4α, In vitro model, inflammatory bowel disease, intestinal barrier, N-Trans-caffeoyltyramine, N-Trans-feruloyltyramine},
pubstate = {published},
tppubtype = {article}
}