Publications
Browse peer-reviewed literature, posters, webinars, blog articles, and more showing how we and others are using RepliGut Systems to support discovery.
2022
Burclaff, Joseph; Bliton, R. Jarrett; Breau, Keith A.; Ok, Meryem T.; Gomez-Martinez, Ismael; Ranek, Jolene S.; Bhatt, Aadra P.; Purvis, Jeremy E.; Woosley, John T.; Magness, Scott T.
A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics Journal Article
In: Cell Mol Gastroenterol Hepatol, vol. 13, no. 5, pp. 1554–1589, 2022, ISSN: 2352-345X.
Abstract | Links | BibTeX | Tags: Differentiate Cell Lineage, Enterochromaffin Cells, Enterocytes, Enteroendocrine Cells, Gut barrier function, Intestinal Epithelial Cells
@article{burclaff_proximal–distal_2022,
title = {A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics},
author = {Joseph Burclaff and R. Jarrett Bliton and Keith A. Breau and Meryem T. Ok and Ismael Gomez-Martinez and Jolene S. Ranek and Aadra P. Bhatt and Jeremy E. Purvis and John T. Woosley and Scott T. Magness},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043569/},
doi = {10.1016/j.jcmgh.2022.02.007},
issn = {2352-345X},
year = {2022},
date = {2022-02-15},
urldate = {2022-02-15},
journal = {Cell Mol Gastroenterol Hepatol},
volume = {13},
number = {5},
pages = {1554–1589},
abstract = {Background & Aims
Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings.
Methods
A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings.
Results
Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses.
Conclusions
Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.},
keywords = {Differentiate Cell Lineage, Enterochromaffin Cells, Enterocytes, Enteroendocrine Cells, Gut barrier function, Intestinal Epithelial Cells},
pubstate = {published},
tppubtype = {article}
}
Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings.
Methods
A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings.
Results
Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses.
Conclusions
Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.
2020
Wang, Yuli; Sims, Christopher E.; Allbritton, Nancy L.
Enterochromaffin Cell-Enriched Monolayer Platform for Assaying Serotonin Release from Human Primary Intestinal Cells Journal Article
In: vol. 92, no. 18, pp. 12330–12337, 2020, ISSN: 1520-6882.
Abstract | Links | BibTeX | Tags: Enterochromaffin Cells, Humans, Intestinal Mucosa, Serotonin
@article{wang_enterochromaffin_2020,
title = {Enterochromaffin Cell-Enriched Monolayer Platform for Assaying Serotonin Release from Human Primary Intestinal Cells},
author = {Yuli Wang and Christopher E. Sims and Nancy L. Allbritton},
doi = {10.1021/acs.analchem.0c02016},
issn = {1520-6882},
year = {2020},
date = {2020-09-15},
volume = {92},
number = {18},
pages = {12330–12337},
abstract = {Enteroendocrine (EE) cells within the intestinal epithelium produce a range of hormones that have key roles in modulating satiety and feeding behavior in humans. The regulation of hormone release from EE cells as a potential therapeutic strategy to treat metabolic disorders is highly sought after by the pharmaceutical industry. However, functional studies are limited by the scarcity of EE cells (or surrogates) in both in vivo and in vitro systems. Enterochromaffin (EC) cells are a subtype of EE cells that produce serotonin (5HT). Here, we explored simple strategies to enrich EC cells in in vitro monolayer systems derived from human primary intestinal stem cells. During differentiation of the monolayers, the EC cell lineage was significantly altered by both the culture method [air-liquid interface (ALI) vs submerged] and the presence of vasoactive intestinal peptide (VIP). Compared with traditional submerged cultures without VIP, VIP-assisted ALI culture significantly boosted the number of EC cells and their 5HT secretion by up to 430 and 390%, respectively. The method also increased the numbers of other subtypes of EE cells such as L cells. Additionally, this method generated monolayers with enhanced barrier integrity, so that directional (basal or apical) 5HT secretion was measurable. For all donor tissues, the enriched EC cells improved the signal-to-background ratio and reliability of 5HT release assays. The enhancement in the 5HT secretion behavior was consistent over time from a single donor, but significant variation in the amount of secreted 5HT was present among tissues derived from five different donors. To demonstrate the utility of the EC-enriched monolayer system, 13 types of pungent food ingredients were screened for their ability to stimulate 5HT secretion. Curcumin found in the spice turmeric derived from the Curcuma longa plant was found to be the most potent secretagogue. This EC-enriched cell monolayer platform can provide a valuable analytical tool for the high-throughput screening of nutrients and gut microbial components that alter the secretion of 5HT.},
keywords = {Enterochromaffin Cells, Humans, Intestinal Mucosa, Serotonin},
pubstate = {published},
tppubtype = {article}
}