Publications
Browse peer-reviewed literature, posters, webinars, blog articles, and more showing how we and others are using RepliGut Systems to support discovery.
2022
Burclaff, Joseph; Bliton, R. Jarrett; Breau, Keith A.; Ok, Meryem T.; Gomez-Martinez, Ismael; Ranek, Jolene S.; Bhatt, Aadra P.; Purvis, Jeremy E.; Woosley, John T.; Magness, Scott T.
A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics Journal Article
In: Cell Mol Gastroenterol Hepatol, vol. 13, no. 5, pp. 1554–1589, 2022, ISSN: 2352-345X.
Abstract | Links | BibTeX | Tags: Differentiate Cell Lineage, Enterochromaffin Cells, Enterocytes, Enteroendocrine Cells, Gut barrier function, Intestinal Epithelial Cells
@article{burclaff_proximal–distal_2022,
title = {A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics},
author = {Joseph Burclaff and R. Jarrett Bliton and Keith A. Breau and Meryem T. Ok and Ismael Gomez-Martinez and Jolene S. Ranek and Aadra P. Bhatt and Jeremy E. Purvis and John T. Woosley and Scott T. Magness},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043569/},
doi = {10.1016/j.jcmgh.2022.02.007},
issn = {2352-345X},
year = {2022},
date = {2022-02-15},
urldate = {2022-02-15},
journal = {Cell Mol Gastroenterol Hepatol},
volume = {13},
number = {5},
pages = {1554–1589},
abstract = {Background & Aims
Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings.
Methods
A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings.
Results
Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses.
Conclusions
Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.},
keywords = {Differentiate Cell Lineage, Enterochromaffin Cells, Enterocytes, Enteroendocrine Cells, Gut barrier function, Intestinal Epithelial Cells},
pubstate = {published},
tppubtype = {article}
}
Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings.
Methods
A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings.
Results
Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses.
Conclusions
Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.
2019
Speer, Jennifer E.; Wang, Yuli; Fallon, John K.; Smith, Philip C.; Allbritton, Nancy L.
Evaluation of human primary intestinal monolayers for drug metabolizing capabilities Journal Article
In: J. Biol. Eng, vol. 13, pp. 82, 2019, ISSN: 1754-1611.
Abstract | Links | BibTeX | Tags: Absorptive Enterocyte Monolayers, Bioavailability, drug metabolising enzymes ({DME}), epithelial barrier, Fg, Intestinal Epithelial Cells, permeability
@article{speer_evaluation_2019,
title = {Evaluation of human primary intestinal monolayers for drug metabolizing capabilities},
author = {Jennifer E. Speer and Yuli Wang and John K. Fallon and Philip C. Smith and Nancy L. Allbritton},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829970/},
doi = {10.1186/s13036-019-0212-1},
issn = {1754-1611},
year = {2019},
date = {2019-11-04},
urldate = {2019-11-04},
journal = {J. Biol. Eng},
volume = {13},
pages = {82},
abstract = {Background
The intestinal epithelium is a major site of drug metabolism in the human body, possessing enterocytes that house brush border enzymes and phase I and II drug metabolizing enzymes (DMEs). The enterocytes are supported by a porous extracellular matrix (ECM) that enables proper cell adhesion and function of brush border enzymes, such as alkaline phosphatase (ALP) and alanyl aminopeptidase (AAP), phase I DMEs that convert a parent drug to a more polar metabolite by introducing or unmasking a functional group, and phase II DMEs that form a covalent conjugate between a functional group on the parent compound or sequential metabolism of phase I metabolite. In our effort to develop an in vitro intestinal epithelium model, we investigate the impact of two previously described simple and customizable scaffolding systems, a gradient cross-linked scaffold and a conventional scaffold, on the ability of intestinal epithelial cells to produce drug metabolizing proteins as well as to metabolize exogenously added compounds. While the scaffolding systems possess a range of differences, they are most distinguished by their stiffness with the gradient cross-linked scaffold possessing a stiffness similar to that found in the in vivo intestine, while the conventional scaffold possesses a stiffness several orders of magnitude greater than that found in vivo.
Results
The monolayers on the gradient cross-linked scaffold expressed CYP3A4, UGTs 2B17, 1A1 and 1A10, and CES2 proteins at a level similar to that in fresh crypts/villi. The monolayers on the conventional scaffold expressed similar levels of CYP3A4 and UGTs 1A1 and 1A10 DMEs to that found in fresh crypts/villi but significantly decreased expression of UGT2B17 and CES2 proteins. The activity of CYP3A4 and UGTs 1A1 and 1A10 was inducible in cells on the gradient cross-linked scaffold when the cells were treated with known inducers, whereas the CYP3A4 and UGT activities were not inducible in cells grown on the conventional scaffold. Both monolayers demonstrate esterase activity but the activity measured in cells on the conventional scaffold could not be inhibited with a known CES2 inhibitor. Both monolayer culture systems displayed similar ALP and AAP brush border enzyme activity. When cells on the conventional scaffold were incubated with a yes-associated protein (YAP) inhibitor, CYP3A4 activity was greatly enhanced suggesting that mechano-transduction signaling can modulate drug metabolizing enzymes.
Conclusions
The use of a cross-linked hydrogel scaffold for expansion and differentiation of primary human intestinal stem cells dramatically impacts the induction of CYP3A4 and maintenance of UGT and CES drug metabolizing enzymes in vitro making this a superior substrate for enterocyte culture in DME studies. This work highlights the influence of mechanical properties of the culture substrate on protein expression and the activity of drug metabolizing enzymes as a critical factor in developing accurate assay protocols for pharmacokinetic studies using primary intestinal cells.
Graphical abstract},
keywords = {Absorptive Enterocyte Monolayers, Bioavailability, drug metabolising enzymes ({DME}), epithelial barrier, Fg, Intestinal Epithelial Cells, permeability},
pubstate = {published},
tppubtype = {article}
}
The intestinal epithelium is a major site of drug metabolism in the human body, possessing enterocytes that house brush border enzymes and phase I and II drug metabolizing enzymes (DMEs). The enterocytes are supported by a porous extracellular matrix (ECM) that enables proper cell adhesion and function of brush border enzymes, such as alkaline phosphatase (ALP) and alanyl aminopeptidase (AAP), phase I DMEs that convert a parent drug to a more polar metabolite by introducing or unmasking a functional group, and phase II DMEs that form a covalent conjugate between a functional group on the parent compound or sequential metabolism of phase I metabolite. In our effort to develop an in vitro intestinal epithelium model, we investigate the impact of two previously described simple and customizable scaffolding systems, a gradient cross-linked scaffold and a conventional scaffold, on the ability of intestinal epithelial cells to produce drug metabolizing proteins as well as to metabolize exogenously added compounds. While the scaffolding systems possess a range of differences, they are most distinguished by their stiffness with the gradient cross-linked scaffold possessing a stiffness similar to that found in the in vivo intestine, while the conventional scaffold possesses a stiffness several orders of magnitude greater than that found in vivo.
Results
The monolayers on the gradient cross-linked scaffold expressed CYP3A4, UGTs 2B17, 1A1 and 1A10, and CES2 proteins at a level similar to that in fresh crypts/villi. The monolayers on the conventional scaffold expressed similar levels of CYP3A4 and UGTs 1A1 and 1A10 DMEs to that found in fresh crypts/villi but significantly decreased expression of UGT2B17 and CES2 proteins. The activity of CYP3A4 and UGTs 1A1 and 1A10 was inducible in cells on the gradient cross-linked scaffold when the cells were treated with known inducers, whereas the CYP3A4 and UGT activities were not inducible in cells grown on the conventional scaffold. Both monolayers demonstrate esterase activity but the activity measured in cells on the conventional scaffold could not be inhibited with a known CES2 inhibitor. Both monolayer culture systems displayed similar ALP and AAP brush border enzyme activity. When cells on the conventional scaffold were incubated with a yes-associated protein (YAP) inhibitor, CYP3A4 activity was greatly enhanced suggesting that mechano-transduction signaling can modulate drug metabolizing enzymes.
Conclusions
The use of a cross-linked hydrogel scaffold for expansion and differentiation of primary human intestinal stem cells dramatically impacts the induction of CYP3A4 and maintenance of UGT and CES drug metabolizing enzymes in vitro making this a superior substrate for enterocyte culture in DME studies. This work highlights the influence of mechanical properties of the culture substrate on protein expression and the activity of drug metabolizing enzymes as a critical factor in developing accurate assay protocols for pharmacokinetic studies using primary intestinal cells.
Graphical abstract
2018
Wang, Yuli; Kim, Raehyun; Gunasekara, Dulan B.; Reed, Mark I.; DiSalvo, Matthew; Nguyen, Daniel L.; Bultman, Scott J.; Sims, Christopher E.; Magness, Scott T.; Allbritton, Nancy L.
Formation of Human Colonic Crypt Array by Application of Chemical Gradients Across a Shaped Epithelial Monolayer Journal Article
In: vol. 5, no. 2, pp. 113–130, 2018, ISSN: 2352-345X, (Publisher: Elsevier).
Links | BibTeX | Tags: Intestinal Epithelial Cells, Intestine-On-A-Chip, Muc2, N-hydroxysuccinimide, olfactomedin-4, Polarized Crypt, short-chain fatty acid, Stem Cell Niche
@article{wang_formation_2018,
title = {Formation of Human Colonic Crypt Array by Application of Chemical Gradients Across a Shaped Epithelial Monolayer},
author = {Yuli Wang and Raehyun Kim and Dulan B. Gunasekara and Mark I. Reed and Matthew DiSalvo and Daniel L. Nguyen and Scott J. Bultman and Christopher E. Sims and Scott T. Magness and Nancy L. Allbritton},
url = {https://www.cmghjournal.org/article/S2352-345X(17)30154-6/fulltext},
doi = {10.1016/j.jcmgh.2017.10.007},
issn = {2352-345X},
year = {2018},
date = {2018-01-01},
urldate = {2018-01-01},
volume = {5},
number = {2},
pages = {113–130},
note = {Publisher: Elsevier},
keywords = {Intestinal Epithelial Cells, Intestine-On-A-Chip, Muc2, N-hydroxysuccinimide, olfactomedin-4, Polarized Crypt, short-chain fatty acid, Stem Cell Niche},
pubstate = {published},
tppubtype = {article}
}