Publications
Browse peer-reviewed literature, posters, webinars, blog articles, and more showing how we and others are using RepliGut Systems to support discovery.
2024
Pike, Colleen M.; Zwarycz, Bailey; McQueen, Bryan E.; Castillo, Mariana; Barron, Catherine; Morowitz, Jeremy M.; Levi, James A.; Phadke, Dhiral; Balik-Meisner, Michele; Mav, Deepak; Shah, Ruchir; Glasspoole, Danielle L. Cunningham; Laetham, Ron; Thelin, William; Bunger, Maureen K.; Boazak, Elizabeth M.
Characterization and optimization of variability in a human colonic epithelium culture model Journal Article
In: ALTEX, vol. 41, no. 3, pp. 425–438, 2024, ISSN: 1868-8551, (Number: 3).
Abstract | Links | BibTeX | Tags: epithelial cell culture, in vitro models, intestinal barrier, microphysiological systems, permeability
@article{pike_characterization_2024,
title = {Characterization and optimization of variability in a human colonic epithelium culture model},
author = {Colleen M. Pike and Bailey Zwarycz and Bryan E. McQueen and Mariana Castillo and Catherine Barron and Jeremy M. Morowitz and James A. Levi and Dhiral Phadke and Michele Balik-Meisner and Deepak Mav and Ruchir Shah and Danielle L. Cunningham Glasspoole and Ron Laetham and William Thelin and Maureen K. Bunger and Elizabeth M. Boazak},
url = {https://www.altex.org/index.php/altex/article/view/2686},
doi = {10.14573/altex.2309221},
issn = {1868-8551},
year = {2024},
date = {2024-07-16},
urldate = {2024-07-16},
journal = {ALTEX},
volume = {41},
number = {3},
pages = {425–438},
abstract = {Animal models have historically been poor preclinical predictors of gastrointestinal (GI) directed therapeutic efficacy and drug-induced GI toxicity. Human stem and primary cell-derived culture systems are a major focus of efforts to create biologically relevant models that enhance preclinical predictive value of intestinal efficacy and toxicity. The inherent variability in stem cell-based cultures makes development of useful models a challenge; the stochastic nature of stem cell differentiation interferes with the ability to build and validate reproducible assays that query drug responses and pharmacokinetics. In this study, we aimed to characterize and reduce sources of variability in a complex stem cell-derived intestinal epithelium model, termed RepliGut® Planar, across cells from multiple human donors, cell lots, and passage numbers. Assessment criteria included barrier formation and integrity, gene expression, and cytokine responses. Gene expression and culture metric analyses revealed that controlling cell passage number reduces variability and maximizes physiological relevance of the model. In a case study where passage number was optimized, distinct cytokine responses were observed among four human donors, indicating that biological variability can be detected in cell cultures originating from diverse human sources. These findings highlight key considerations for designing assays that can be applied to additional primary cell-derived systems, as well as establish utility of the RepliGut® Planar platform for robust development of human-predictive drug-response assays.
Plain language summary Animal models are frequently used as tools for studying gastrointestinal (GI) disease, but they inadequately replicate the complexities of the human gut, making them poor predictors of how humans respond to new drugs. Models using human stem cells are closer to human GI physiology, but their responses are not uniform owing to variability in the stem cells. We looked for the sources of this variability in the primary stem-cell derived RepliGut® Planar model. We found that limiting how long the cells were kept in culture reduced their variability and improved the physiological relevance of the model. These findings highlight key assay design considerations that also can be applied to other primary cell-derived systems. Reliable and physiologically relevant cell-based models can reduce animal testing, improve research accuracy, and ensure new treatments are more relevant and effective for patients.},
note = {Number: 3},
keywords = {epithelial cell culture, in vitro models, intestinal barrier, microphysiological systems, permeability},
pubstate = {published},
tppubtype = {article}
}
Plain language summary Animal models are frequently used as tools for studying gastrointestinal (GI) disease, but they inadequately replicate the complexities of the human gut, making them poor predictors of how humans respond to new drugs. Models using human stem cells are closer to human GI physiology, but their responses are not uniform owing to variability in the stem cells. We looked for the sources of this variability in the primary stem-cell derived RepliGut® Planar model. We found that limiting how long the cells were kept in culture reduced their variability and improved the physiological relevance of the model. These findings highlight key assay design considerations that also can be applied to other primary cell-derived systems. Reliable and physiologically relevant cell-based models can reduce animal testing, improve research accuracy, and ensure new treatments are more relevant and effective for patients.
Debad, Susan; Allen, David; Bandele, Omari; Bishop, Colin; Blaylock, Michaela; Brown, Paul; Bunger, Maureen K.; Co, Julia Y.; Crosby, Lynn; Daniel, Amber B.; Ferguson, Steve S.; Ford, Kevin; da Costa, Gonçalo Gamboa; Gilchrist, Kristin H.; Grogg, Matthew W.; Gwinn, Maureen; Hartung, Thomas; Hogan, Simon P.; Jeong, Ye Eun; Kass, George E. N.; Kenyon, Elaina; Kleinstreuer, Nicole C.; Kujala, Ville; Lundquist, Patrik; Matheson, Joanna; McCullough, Shaun D.; Melton-Celsa, Angela; Musser, Steven; Oh, Ilung; Oyetade, Oluwakemi B.; Patil, Sarita U.; Petersen, Elijah J.; Sadrieh, Nakissa; Sayes, Christie M.; Scruggs, Benjamin S.; Tan, Yu-Mei; Thelin, Bill; Nelson, M. Tyler; Tarazona, José V.; Wambaugh, John F.; Yang, Jun-Young; Yu, Changwoo; Fitzpatrick, Suzanne
Trust your gut: Establishing confidence in gastrointestinal models – An overview of the state of the science and contexts of use Journal Article
In: ALTEX, vol. 41, no. 3, pp. 402–424, 2024, ISSN: 1868-8551.
Abstract | Links | BibTeX | Tags: Adverse events, Co-culture model, Enteroendocrine Cells, epithelial barrier, Gut barrier function, Gut liver microphysiological system, in vitro models, intestinal barrier, microphysiological system, microphysiological systems, organ-on-chips
@article{debad_trust_2024,
title = {Trust your gut: Establishing confidence in gastrointestinal models – An overview of the state of the science and contexts of use},
author = {Susan Debad and David Allen and Omari Bandele and Colin Bishop and Michaela Blaylock and Paul Brown and Maureen K. Bunger and Julia Y. Co and Lynn Crosby and Amber B. Daniel and Steve S. Ferguson and Kevin Ford and Gonçalo Gamboa da Costa and Kristin H. Gilchrist and Matthew W. Grogg and Maureen Gwinn and Thomas Hartung and Simon P. Hogan and Ye Eun Jeong and George E. N. Kass and Elaina Kenyon and Nicole C. Kleinstreuer and Ville Kujala and Patrik Lundquist and Joanna Matheson and Shaun D. McCullough and Angela Melton-Celsa and Steven Musser and Ilung Oh and Oluwakemi B. Oyetade and Sarita U. Patil and Elijah J. Petersen and Nakissa Sadrieh and Christie M. Sayes and Benjamin S. Scruggs and Yu-Mei Tan and Bill Thelin and M. Tyler Nelson and José V. Tarazona and John F. Wambaugh and Jun-Young Yang and Changwoo Yu and Suzanne Fitzpatrick},
url = {https://altex.org/index.php/altex/article/view/2787},
doi = {10.14573/altex.2403261},
issn = {1868-8551},
year = {2024},
date = {2024-07-16},
urldate = {2024-07-16},
journal = {ALTEX},
volume = {41},
number = {3},
pages = {402–424},
abstract = {The webinar series and workshop titled “Trust Your Gut: Establishing Confidence in Gastrointestinal Models – An Overview of the State of the Science and Contexts of Use” was co-organized by NICEATM, NIEHS, FDA, EPA, CPSC, DoD, and the Johns Hopkins Center for Alternatives to Animal Testing (CAAT) and hosted at the National Institutes of Health in Bethesda, MD, USA on October 11-12, 2023. New approach methods (NAMs) for assessing issues of gastrointestinal tract (GIT)- related toxicity offer promise in addressing some of the limitations associated with animal-based assessments. GIT NAMs vary in complexity, from two-dimensional monolayer cell line-based systems to sophisticated 3-dimensional organoid systems derived from human primary cells. Despite advances in GIT NAMs, challenges remain in fully replicating the complex interactions and processes occurring within the human GIT. Presentations and discussions addressed regulatory needs, challenges, and innovations in incorporating NAMs into risk assessment frameworks; explored the state of the science in using NAMs for evaluating systemic toxicity, understanding absorption and pharmacokinetics, evaluating GIT toxicity, and assessing potential allergenicity; and discussed strengths, limitations, and data gaps of GIT NAMs as well as steps needed to establish confidence in these models for use in the regulatory setting.
Plain language summaryNon-animal methods to assess whether chemicals may be toxic to the human digestive tract promise to complement or improve on animal-based methods. These approaches, which are based on human or animal cells and/or computer models, are faced with their own technical challenges and need to be shown to predict adverse effects in humans. Regulators are tasked with evaluating submitted data to best protect human health and the environment. A webinar series and workshop brought together scientists from academia, industry, military, and regulatory authorities from different countries to discuss how non-animal methods can be integrated into the risk assessment of drugs, food additives, dietary supplements, pesticides, and industrial chemicals for gastrointestinal toxicity.},
keywords = {Adverse events, Co-culture model, Enteroendocrine Cells, epithelial barrier, Gut barrier function, Gut liver microphysiological system, in vitro models, intestinal barrier, microphysiological system, microphysiological systems, organ-on-chips},
pubstate = {published},
tppubtype = {article}
}
Plain language summaryNon-animal methods to assess whether chemicals may be toxic to the human digestive tract promise to complement or improve on animal-based methods. These approaches, which are based on human or animal cells and/or computer models, are faced with their own technical challenges and need to be shown to predict adverse effects in humans. Regulators are tasked with evaluating submitted data to best protect human health and the environment. A webinar series and workshop brought together scientists from academia, industry, military, and regulatory authorities from different countries to discuss how non-animal methods can be integrated into the risk assessment of drugs, food additives, dietary supplements, pesticides, and industrial chemicals for gastrointestinal toxicity.